
 MODIFYING DATA IN DATABASE TABLES

UNIT – IV

Dr.A.DEVI

 Associate Professor

Department of Computer Applications

DRSNSRCAS

 MODIFYING DATA IN DATABASE TABLES

Modifying Data in a Database Table

Authorisations
When writing programs using open SQL, one has to bear in mind the concepts of authori-

sation in an SAP system. An SAP system has its own security tools to ensure that users can

only access data which they are authorised to see. This includes individual fields as well as

individual records. The way authorisations are set up can also limit how data is used,

whether a user can only display data or whether they can modify it. All the rules pertain-

ing to this are stored as authorisation objects. These will not be examined in great detail

here, but ordinarily users are assigned their own authorisation profile (or composite pro-

file) against their user record, which for informational purposes is managed through

transaction code SU01.

This profile then gives the user the correct rights within the program to then carry out their

job and SAP delivers many predetermined user profiles with the base system. The system

administrators can then use and enhance these to be applied to users. Once a user has one of

these profiles, the system will tell them whether or not they can execute a transaction when

they try to do this. For example, transaction SE38, the ABAP editor, could be tweaked so

that while some users may be able to access it, perhaps they can only do so in display mode,

or perhaps they can display and debug the code, but not change it themselves.

Where specific authorisations have not been implemented, programs can be made to carry

out an authority check, using the statement AUTHORITY-CHECK. This must be used if a

program or transaction is not sufficiently protected by the standard authorisation pro- files

already set up in the system.

While, this will not be examined in great detail here (the topic is huge in itself), it is impor-

tant to bear authorisations in mind when working in SAP.

Fundamentals
So far, reading data from database tables has been looked at, now modifying and deleting

 MODIFYING DATA IN DATABASE TABLES

this data will be examined. There are some important concepts to keep in mind here, for

 MODIFYING DATA IN DATABASE TABLES

example, the architecture of the system. If one has a three-tier architecture (with a pres-

entation layer, an application server and an underlying database), you must bear in mind

that there may be a very large number of users accessing the data at any one time. It is

important to ensure that programs created do not cause any problems in the rest of the

system and that the most recent version of the data held on the database is accessed when a

program runs. If records are constantly being updated, programs must be able to read and

work with data which is current in the system. Fortunately, most of this work is done

automatically by the SAP system, and one doesn’t have to worry too much about the

underlying technologies related to how data is locked and so on.

One of the key tools which can be used is Open SQL. This acts as an interface between the

programs created and the database. By using Open SQL, one can read and modify data, and

also buffer data on the application server, which reduces the number of database ac- cesses

the system has to perform. It is the database interface which is also responsible for

synchronising the buffers with the database tables at predetermined intervals.

When one is creating programs it is important to keep in mind that if data is buffered, and

this buffered data is subsequently read, it may not always be up to date. So, when tables are

created, they must be created in such a way that the system is told that buffering can or

cannot be used, or that it can only be used in certain situations. When the example ta- bles

were created earlier, the system was told not to use buffering. Using this setting means that

every time data is read from a table, it will always use the most up to date re- cords.

Buffering can be useful for tables which hold master data and configuration settings, be-

cause this kind of data does not get updated regularly. When one is working with transac-

tional data however, one wants this data to be as up to date as possible. If transactional data

is being used in a context where tables are using buffering, it is important to ensure that

programs related to this can take this into account, and make sure that the buffer is updated

with new data when this is needed.

When one uses Open SQL statements in a program, tables can only be accessed through the

ABAP dictionary. This acts as an interface, one does not access the tables directly through

programs. This is not a problem however, as when one uses Open SQL state- ments, it

works just the same as if one was accessing the database directly. Open SQL manages its

interface with the database by itself, without the need for the user to do any-

 MODIFYING DATA IN DATABASE TABLES

thing here. Statements can be coded just as though they had direct access to the tables,

though with the underlying knowledge that by using Open SQL, the data is in fact being

accessed through the ABAP dictionary with a built-in level of safety to ensure the ABAP

code does not have a direct effect on the SAP database system itself.

Database Lock Objects
Now, locking concepts will be considered. This refers to locking data in database tables and

there are two basic types of locking which must be kept in mind. First of all, database locks.

These lock data in a physical database. When a record is updated, a lock is set on this, then

when it is updated the lock is released. It is there to ensure that, once set, the data can only

be accessed and updated by those authorised to do so. When released, it can be accessed

more widely.

These locks, though, are not sufficient in an SAP system, and are generally only used when

a record is being modified in a single step dialogue process. This process refers to any time

that the data in a database can be updated in a single step, on a single screen. In this case,

the data can be locked, updated and released very quickly.

As you work more with SAP, the insufficiency of database locks will become clearer, be-

cause transactions in an SAP system often occur over multiple steps. If, for example, an

employee record is added to the system, one may have to fill in many screens of data. The

user in this case will only want the record to be added to the system at the end of the last

screen, once all of the data in all of the screens has been input. If just the first screen’s data

was saved into the database, then the second’s, and so on, one by one, if the user were to

quit halfway through the process, an invalid and unfinished record would be in the

database.

This demonstrates the hazard of using database locks with multi-step dialogue processes.

For these instances, SAP has introduced a new kind of lock, independent of the database

system. These are called lock objects, and allow data records to be locked in multiple da-

tabase tables for the whole duration of the SAP transaction, provided that these are linked in

the ABAP dictionary by foreign key relationships.

SAP lock objects form the basis of the lock concept, and are fully independent of database

locks. A lock object allows one to lock a record for multiple tables for the entire duration of

an SAP transaction. For this to work, the tables must be linked together using foreign

 MODIFYING DATA IN DATABASE TABLES

keys. The ABAP dictionary is used to create lock objects, which contain the tables and key

fields which make up a shared lock.

When the lock object is created, the system automatically creates two function modules,

which will be discussed later. These function modules are simply modularised ABAP pro-

grams that can be called from other programs. The first of these has the action of setting a

lock, and the second releases this lock. It is the programmer’s responsibility to ensure that

these function modules are called at the correct place in the program. When a lock is set, a

lock record is created in the central lock table for the entire SAP system. All programs must

adhere to using the SAP lock concept to ensure that they set, delete and query the lock table

that stores the lock records for the relevant entries.

Lock objects will not be discussed much further, however subsequent programs created,

tables accessed and so on here will be done on the assumption that they are not to be used

outside of one’s own system.

Using Open SQL Statements
Now, some of the Open SQL statements which can be used in programs will be looked at.

As mentioned before, Open SQL statements allow one to indirectly access and modify data

held in the underlying database tables. The SELECT statement, which has been used

several times previously, is very similar to the standard SQL SELECT statement used by

many other programming languages. With Open SQL, these kinds of statements can be

used in ABAP programs regardless of what the underlying database is. The system could be

running, for example, an Oracle database, a Microsoft SQL database, or any other, and by

using Open SQL in programs in conjunction with the ABAP dictionary to create and

modify database tables, one can be certain that the ABAP code will not have any issues

accessing the data held by the specific type of database the SAP system uses.

When the first database table was created previously, the field MANDT was used, repre-

senting the client number and forming part of the database table key, highlighted below:

 MODIFYING DATA IN DATABASE TABLES

One may think that, given the importance of this field, it would have to be used in ABAP

programs when using Open SQL statements, however, it does not. Almost all tables will

include this ‘hidden’ field within them, and the SAP system is built in such a way that a

filter is automatically applied to this field, based on the client ID being used. If one is

logged in, for example, to client 100, the system will automatically filter all records in the

database on this client key and only return those for client 100. When Open SQL is used in

the programs one creates, the system manages this field itself, meaning it never has to be

included in any selections or update statements used in programs. Also, this carries the

benefit of security in the knowledge that any Open SQL statement executed in a program

will only affect the records held in the current client.

Using Open SQL Statements – 5 Statements
There are 5 basic Open SQL statements which will be used regularly in programs from here

forward. These are SELECT, INSERT, UPDATE, MODIFY and DELETE.

 The SELECT statement has, of course, already been used. This statement allows

one to select records from database tables which will then be used in a program.

INSERT allows new records to be inserted into a database table.

UPDATE allows records which already exist in the table to be modified.

MODIFY performs a similar task to update, with slight differences which we will

discuss shortly.

 DELETE, of course, allows records to be deleted from a table.

Whenever any of these statements are used in an ABAP program, it is important to check

whether the action executed has been successful. If one tries to insert a record into a da-

tabase table, and it is not inserted correctly or at all, it is important to know, so that the

appropriate action can be taken in the program. This is done using a system field which has

already been used: SY-SUBRC. When a statement is executed successfully, the SY-

SUBRC field will contain a value of 0, so this can be checked for and, if it appears, one can

continue with the program. If it is not successful, however, this field will contain a differ-

ent value, and depending on the statement, this value can have different meanings. It is

therefore important to know what the different return codes are for the different ABAP

statements, so as to recognise problems and take the correct course of action to solve them.

This may sound difficult, but with practice will become second-nature.

 MODIFYING DATA IN DATABASE TABLES

Insert Statement
The SELECT statement has already been used, so here it will be skipped for now to focus

on the INSERT statement. In this example then, a new record will be inserted into the

ZEMPLOYEES table. Firstly, type INSERT, followed by the table name, and then a period:

Doing this, one must always type the table name, a variable’s name cannot be used in-

stead. Use the check statement (IF) to include an SY-SUBRC check, telling the system to

do if this does not equal 0:

This is the simplest form of the INSERT statement, and not necessarily the one which is

encouraged. Using this form is no longer standard practice, though one may come across it

if working with older ABAP programs.

In the above statement, nothing is specified to be inserted. This is where the concept of the

work area enters. The statement here expects a work area to exist which has been created

when an internal table was declared. This type of work area is often referred to as a header

record:

The table above shows the yellow area as a standard table containing four records and their

respective fields, the area above in grey is the header record, which is stored in memory and

is the area which is accessed when the table is referenced from a program only by its table

name. If an INSERT statement is executed, whatever is contained in the header record will

be inserted into the table itself. The header record does not exist in the

 MODIFYING DATA IN DATABASE TABLES

table, it is just an area stored in memory where a current record can be worked with, hence

the term work area. When someone refers to the table only by its table name, it is the header

record which is referred to, and this can become confusing. One thinks that one is

referencing the table itself, but in fact it is the header record which is being worked with, a

record held in memory with the same structure as the table. ABAP objects, which are

important when one gets to a more advanced stage in ABAP, will not allow a header record

to be referred to, so it is important not to do this. Header records were used com- monly for

this in the past, but as noted previously, this is no longer the way things are done.

To avoid confusion when working with internal tables should programs must work with

separate work areas, which are perhaps similar in structure to a header record, but not

attached to the table, with a separate name. These are separate structures from the initial

table, which are created in a program.

To declare a work area the DATA statement is used. Give this the name “wa_employees”.

Now, rather than declaring one data type for this, several fields which make up the table

will be declared. The easiest way to do this is to use the LIKE statement.

So here, the wa_employees work area is declared LIKE the zemployees table, taking on the

same structure without becoming a table itself. This work area will only store one record.

Once this is declared, the INSERT statement can be used to insert the work area and the

record it holds into the table. The code here will read “INSERT zemployees FROM

wa_employees”:

 MODIFYING DATA IN DATABASE TABLES

Additionally, using this form of the INSERT statement allows you to specify the table name

using a variable instead. It is important to note here that if one is doing this, the variable

must be surrounded by brackets.

Now, the work area must be filled with some data. Use the field names from the

zemployees table. This can be done by forward navigation, double-clicking the table name

in the code, or by opening a new session and using SE11. The fields of the table can then be

copy & pasted into the ABAP editor and the work area’s fields populated as in the image

below:

The check statement can then be formulated as follows, meaning that if the record is in-

serted correctly, the system will state this, if not then the SY-SUBRC code which will not

equal zero is will be displayed:

Check the program, save, and activate the code, then test it. The output window will dis-

play:

If you check the records in your table via the ‘Data Browser’ screen in the ABAP dictionary,

a new record will be visible:

 MODIFYING DATA IN DATABASE TABLES

For practice use the ABAP debugger to execute the code step-by-step. First, delete the

record from the table in the ABAP dictionary and put a breakpoint in the code at the be-

ginning of the record entry to the work area:

Now execute the program. The breakpoint will cause program execution to pause at your

breakpoint and the debugger will open:

Firstly, use the Fields mode to view the work area structure. Double click the

wa_employees after the DATA statement and it will appear in the ‘Field names’ box at the

bottom. At this point the work area is completely empty, evidenced by the zeros in the

adjacent box. To display the full structure, double click the wa_employees in the left box:

 MODIFYING DATA IN DATABASE TABLES

Then, execute each line of code starting from the breakpoint using the F5 key, the fields

within this structure view are filled one by one:

Return to the Fields view before executing the INSERT statement, and observe the SY-

SUBRC field at the bottom of the window. It displays a value of 0. If there are any prob-

lems in the execution, this will then change (4 for a warning, 8 for an error). Given that this

code has already been successful, you already know that it will remain 0. Once the program

has been executed in the debugger, refresh the table in the Data Browser screen again, and

the record will be visible.

Clear Statement
At this point, the CLEAR statement will be introduced. In ABAP programs, one will not al-

ways simply see the program start at the top, insert one data record and continue on.

 MODIFYING DATA IN DATABASE TABLES

Loops and the like will be set up, allowing, for example, many records to be inserted at

once. To do this, variables and structures are re-used repeatedly. The CLEAR statement

allows a field or variable to be cleared out for the insertion of new data in its place, allow-

ing it to be re-used. The CLEAR statement is certainly one which is used commonly in pro-

grams, as it allows existing fields to be used multiple times.

In the previous example, the work area structure was filled with data to create a new re-

cord to be inserted into the zemployees table, then a validation check performed. If one then

wants to insert a new record, the work area code can then be copy & pasted below this.

However, since the work area structure is already full, the CLEAR statement must be used

so that it can then be filled again with the new data.

To do this, the new line of code would read “CLEAR wa_employees.”

If you just wanted to clear specific fields within your structure you just need to specify the

individual fields to be cleared, as in the example below, clear the employee number field.

New data can then be entered into the work area again:

Remember that the employee number is a key field for the zemployees table, so as long as

this is unique, duplicate information could be entered into the other fields. If one tries to

enter the same employee number again though, the sy-subrc field will display a warning

with the number 4.

You can see the operation of the CLEAR statement in debug mode. The three images be-

low display the three stages of its operation on the field contents as the code is executed:

 MODIFYING DATA IN DATABASE TABLES

Update Statement
The UPDATE statement allows one or more existing records in a table to be modified at the

same time. In this example it will just be applied to one, but for more the same princi- ples

generally apply.

Just as with the INSERT statement, a work area is declared, filled with the new data which

is then put into the record as the program is executed.

Delete the record created with the CLEAR statement as before. Here, the record previ-

ously created with the INSERT statement will be updated. Copy & paste the work area and

then alter, the text stored in the SURNAME and FORENAME fields. Then on a new line,

the same structure as for the INSERT statement is used, but this time using UPDATE:

 MODIFYING DATA IN DATABASE TABLES

As this is run line-by-line in debug mode, you can see the Field contents change as it is

executed:

Once the UPDATE statement has been executed you can view the Data Browser in the

ABAP Dictionary to see that the record has been changed successfully:

Modify Statement
The MODIFY statement could be said to be like a combination of the INSERT and

UPDATE statements. It can be used to either insert a new record or modify an existing one.

Gener- ally, though the INSERT and UPDATE statements are more widely used for these

purposes, since these offer greater clarity. Using the MODIFY statement regularly for these

purposes is generally considered bad practice. However, times will arise where its use is

appropri- ate, for example of one is writing code where a record must be inserted or updated

de- pending on a certain situation.

 MODIFYING DATA IN DATABASE TABLES

Unsurprisingly, the MODIFY statement follows similar syntax to the previous two state-

ments, modifying the record from the data entered into a work area. When this statement is

executed, the key fields involved will be checked against those in the table. If a record with

these key field values already exists, it will be updated, if not then a new record will be

created.

In the first section of code in the image below, since employee number is the key field, and

‘10000006’ already exists, the record for that employee number will be updated with the

new name in the code. A validation check is performed next. The CLEAR statement is then

used so a new entry can be put into the work area, and then employee 10000007 is added.

Since this is a new, unique key field value, a new record will be inserted, and an- other

validation check executed:

 MODIFYING DATA IN DATABASE TABLES

When this is executed, and the data then viewed in the Data Browser, employee number

10000006 will have been updated with the new name, Peter Northmore, and a new re- cord

will have been created for number 10000007, Susan Southmore:

Delete Statement
The last statement to be looked at in this section is the DELETE statement. One must be

careful using this, because if used incorrectly, there is the possibility of wiping the entire

contents of the table, however, as long as it is used correctly, there should be no problem of

this sort.

Unlike the previous SQL statements, the DELETE statement does not take into account

most fields, only the primary key field. When you want to delete a record from a table, the

system only needs to be told what the primary key field value for that record is.

In this example, the last record created, for the employee Susan Southmore will be de-

leted. For the zemployees table, there are two key fields, the client field and the employee

number. The client field is dealt with automatically by the system, and this never has to be

included in programs, so the important field here is the employee number field. The syn-

tax to delete the last record created in the previous section would be this:

The FROM addition in the last line ensures only the record referred to by its key field in the

work area will be deleted. Again, a validation check is performed to ensure the record is

deleted successfully. When this is run in debug mode you can see the fields which are filled

with the creation of the record are cleared as the CLEAR statement executes.

After the employee number is filled again the DELETE statement is executed. The code’s

output window will indicate the success of the deletion and the record will no longer ap-

pear in the Browser view of the table:

 MODIFYING DATA IN DATABASE TABLES

 MODIFYING DATA IN DATABASE TABLES

The record is now gone from the table.

There is another form of the DELETE statement which can be used. You are not just re-

stricted to using the table key to delete records, logic can also be used. So, rather than using

the work area to specify a key field, and using the FROM addition to the DELETE

statement, one can use the WHERE addition to tell the program to delete all records where

a certain field matches a certain value, meaning that if one has several records which match

this value, all of them will be deleted.

The next example will demonstrate this. All records with the surname Brown will be de-

leted. To be able to demonstrate this, create a second record containing a surname of

Brown, save this and view the data:

The code for the new DELETE statement should then look like this. Note the additional

FROM which must be used in this instance:

 MODIFYING DATA IN DATABASE TABLES

When this code is executed, both records containing a Surname of Brown will be deleted.

Note that, if one uses the following piece of code, without specifying the logic addition, all

of the records will in fact be deleted:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Chapter 10 – Program Flow Control and Logical

Expressions

Control Structures
This section will look at program flow control and logical expressions. It could be argued

that this is really the main aspect of ABAP programming, where the real work is done.

How one structures a program using logical expressions will determine the complete flow

of the program and in what sequence actions are taken.

First, a look will be taken at control structures. When a program is created it is broken up

into many tasks and subtasks. One controls how and when the sections of a program are

executed using logical expressions and conditional loops, often referred to as control

structures.

If Statement
Copy you program previous chapter in which to test some of the logic which is to be built.

Here I copy the program Z_OPENSQL_1 to Z_LOGIC_1:

Remove all of the code from the program, leaving only the first example INSERT statement

and its validation test.

When one talks of control structures, this refers to large amounts of code which allows one

to make decisions, resulting in a number of different outcomes based on the decisions

taken. Take a look at the IF statement to explain the basic logic at work here.

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

The IF statement is probably the most common control structure, found in just about every

programming language. The syntax may vary between languages, but its use is just about

universal:

This IF statement tells the program that IF (a logical expression), do something. The ELSE

addition means that should this logical expression not occur, do something else. Then the

statement is ended with the ENDIF statement.

The IF and ENDIF statements belong together, and every control structure created will take

a similar form, with a start and an end. Control structures can be very large, and may

contain other, smaller control structures within them, having the system perform tasks

within the framework of a larger task. The code between the start and end of a control

structure defines the subtasks within it. Tasks can be repeated, in what are called loops.

From here on, control structures will be used to control the flow, create tasks, subtasks and

branches within a program, and to perform loops.

Comment out all of the preceding code, and click the ‘Pattern’ button, in the toolbar by

Pretty Printer. A window will appear, and just select the ‘Other pattern’ field, and type

“IF”. The structure of an IF statement will then appear in the code, which can be followed

as a guide:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Create a DATA statement, 15 characters of type ‘c’, and name this “surname”. Then on a

new line give this the value ‘SMITH’. Then edit the auto-generated IF statement so that it

looks like this.

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

The IF statement here takes the form that if the value of ”surname” is ‘SMITH’, text will be

displayed stating “Youve won a car!” (note that an apostrophe cannot be placed correctly in

You’ve without making the code invalid). Then execute the code. The result should be:

Next, this will be extended to include the ELSEIF statement which has been commented

out above. Change the value of “surname” to ‘BROWN’. Then, add to the ELSEIF

statement so that if the value of “surname” is ‘BROWN’, the output text will read “Youve

won a boat!”:

In this example, the first IF statement was not true, as the surname was not Smith. Hence

this branch was not executed. The ELSEIF statement was true, so the text output assigned

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

here appeared. The ELSEIF statement can be added to an IF statement any number of

times, to designate the action taken in a number of situations:

Depending on what the value of ‘surname’ is at any given time, a different branch will be

executed.

There is also the ELSE statement. This is used for the last piece of the IF block, and is used

if none of the values in the IF and ELSEIF statement are matched. The full block of code is

shown below:

With this block as it is now, there will always be an output, regardless of the value of ‘sur-

name’, every possibility is now taken care of. The value will either match one of the first

four, or the ELSE statement’s text will be displayed. The IF statement is very important for

determining the flow of a program and will be used on a regular basis.

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Linking Logical Expressions Together
There are a whole set of ABAP operators which can be used with logic statements. With the

IF statement so far the equals (=) operator has been used. The following can also be used

here:

(from left to right: equal to, NOT equal to, less than, greater than, less than OR equal to,

greater than OR equal to. These can also be written with their text equivalents, in order:

EQ, NE, LT, GT, LE, GE. The text versions are not commonly used.)

Logical expressions can be linked with the operators OR, AND and NOT. For example, one

could add to the previous IF statement:

OR and NOT operate can also be used in exactly the same way

Nested If Statements
Nested IF statements allow one to include IF statements inside other IF statements, for

example:

Here, the first IF statement will discount records where the Surname field value does not

equal ‘SMITH’. For all records with a Surname = ‘SMITH’, the second IF statement checks

to see if the record being processed has a Forename = ‘JOHN’. If it does the message

“Youve won a car!” will be output to the screen. If not, a consolatory message will be out-

put instead.

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

You are not limited to just one nested IF statement. Nesting can continue down as many

levels / branches as is required by the program being written, for example:

Also, you do not simply have to nest statements one after another, but can put any other

statements you need between, as long as the control structures are terminated correctly

with, in this case, the ENDIF statement.

Case Statement
When logical expressions are created, and linked together, it is always important to make

the code as readable as possible. Generating many logical expressions on one line can of-

ten be confusing. While the code will still work without problems, it is preferable to struc-

ture your code across multiple lines and make use of other control structures if possible.

This is where the CASE statement can help. This does similar work to the IF statement but

with the flexibility to make the code much more readable, but is at the same time limited to

one logical expression. Here is an example code block for the CASE statement:

Like the IF statement, here the contents of the surname field are searched by the CASE

statement, checking its contents and performing an action. The WHEN addition is used to

check the field for different values, and WHEN OTHERS accounts for all values which are

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

not specified elsewhere. The ENDCASE statement closes this control structure. This is in

many ways much easier to read than a large amount of nested IFs and ELSEIFs.

You also have the facility to nest multiple CASE statements.

Select Loops
This next section will discuss iteration statements, otherwise known as looping state- ments.

These are used to execute a block of ABAP code multiple times.

Create another new program and call it Z_ITERATIONS_1.

There are various ways to loop through blocks of code in an ABAP program, and these can

be separated into those which have conditions attached and those which do not. The

SELECT statement is a form of loop which has already been used. This statement allows

you to iterate through a record set.

The asterisk (*) tells the program to select everything from the zemployees table, and this is

followed by a WRITE statement to write the table to the output screen. The SELECT loop

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

closed with ENDSELECT, at which point the loop returns to the start, writing each record

in turn until there are no more records to process in the table.

This last example had no conditions attached. To add a condition is quite simple:

Here, only records where the surname is Mills will be selected and written to the output

screen:

Do Loops
The DO loop is a simple statement, here declare DO. Add a WRITE statement, and then

ENDDO:

You will notice there is nothing to tell the loop to end. If one tries to execute the code, the

program will get stuck in a continuous loop endlessly writing out ‘Hello’ to the output

screen. The transaction must be stopped and the code amended. A mechanism must be

added to the DO loop to tell it when to stop processing the code inside it. Here, the TIMES

addition is used. Amend the code as follows so that the system knows the loop is to be

processed 15 times. Also here a ‘new line’ has been added before ‘Hello’:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

The DO statement is useful for repeating a particular task a specific number of times. Just

remember to always include the TIMES addition.

Now try some processing with the DO loop. Create a DATA variable named ‘a’, of type in-

teger, and set the value of this to 0. Then, inside the DO loop, include the simple calcula-

tion “a = a + 1”.

The system also contains its own internal counter for how many times a DO loop is exe-

cuted, which can be seen when this is executed in debug mode. Set a breakpoint on the DO

line, then execute the code, keeping an eye on the ‘a’ field in the Field names section, and

also includes ‘sy-index’ in one of these fields. You will see that ‘a’ keeps a running count of

how many times the DO loop executes as well as the system variable sy-index. The values

will be the same for both, going up by 1 each time the loop completes. The sy- index

variable will in fact update a line of code before the ‘a’ variable, as it counts the DO loops,

and the ‘a’ refers to the calculation on the next line of code:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Note that here the blue arrow cursor has moved down a line in the second image, execut-

ing the next line of code. If one adds a new line to the WRITE statement in the initial code,

the output window will appear like this:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Nested Do Loops
DO loops can also be nested. If this is done, each nested loop will have its own sy-index

created and monitored by the system. Be aware that when nesting many loops, it is im-

portant to consider how much work the system is being asked to do.

Add to the WRITE statement from the previous section a small amount of text reading

‘Outer Loop cycle:’ before outputting the value of ‘a’. This will allow ‘a’ to be monitored.

Then, under the WRITE statement, add a new DO statement to create the inner loop cycle,

as below, as well as adding the extra data variables. The main loop will execute 15 times,

but within each of these loops, the nested loop will execute 10 times. The variable named

‘c’ will count how many times the loop has occurred. Around 150 loops will execute here.

While the SAP system will certainly be able to handle this instantly, you should bear in

mind that if this number was significantly larger and included more intensive processing

than simple counting, this could take much longer:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Set a breakpoint and execute this code in debug mode, keeping an eye on the values of a, b,

c and sy-index in the Fields mode. As the DO loop is entered, the sy-index field will be- gin

counting. Here, the inner loop has just occurred for the 10th time, noted by the 10 in sy-

index (and indeed the value of ‘b’).

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Then the full loop has completed once, the sy-index field displays 1 and the ‘c’ field has

been filled in:

After the second full loop, sy-index and ‘a’ will display 2, ‘b’ will be 10 again (as its value

is reset to 0 at the beginning of each loop) and ‘c’ will display 20 representing the number

of calculations completed all together:

After the full 15 outer loops are completed, it will look like this:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

The value of ‘a’ is then added to ‘c’ to give the total number of both outer and inner loops

completed:

When the results are viewed in the output window, the last full loop will look like this:

While Loops
The next looping statement to be examined is the WHILE loop. This differs from the DO

loop in that it checks for a predefined condition within the loop before executing any code.

All the code between the WHILE and ENDWHILE statements will be repeated as long as

the conditions are met. As soon as the condition is false the loop terminates. Here, again the

sy-index field can be monitored to see how many times the loop has executed.

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

So here, the loop will again cause the value of ‘a’ to take the form of incremental count-

ing, and each time the loop is executed the value of ‘a’ will be written. The loop will con-

tinue as long as the value of ‘a’ is not equal to 15, and once it is, it will stop:

If one runs this in the debugger mode one will see that on the 15th loop, when the value of

‘a’ is 15, the code inside the statement is skipped over and the cursor jumps straight from

WHILE to ENDWHILE.

Nested While Loops
Just as with DO loops, WHILE loops can be nested. The process is exactly the same for

both. Below is an example of nested WHILE loop statements.

The output for this code would appear exactly the same as our nested DO loop example.

The values of ‘b’ have also been indented slightly here for ease of reading:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

Loop Termination – CONTINUE
Up until now, the loop statements set up have been allowed to use the conditions inside

them to determine when they are terminated. ABAP also includes termination statements

which allow loops to be ended prematurely. There are two categories of these, those which

apply to the loop and those which apply to the entire processing block in which the loop

occurs.

First, we will looks at how to terminate the processing of a loop. The first statement of

importance here is the CONTINUE statement. This allows a loop pass to be terminated

unconditionally. As the syntax shows, there are no conditions attached to the statement

itself. It tells the program to end processing of the statements in the loop at the point where

it appears and go back to the beginning of the loop again. If it is included within a loop, any

statements after it will not be executed.

For the simple DO loop ,include an IF statement which includes CONTINUE inside it, like

this:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

With this code, the second iteration of the loop (when the sy-index field, like the value of a,

will read 2) will hit the CONTINUE statement and go back to the top, missing the WRITE

statement. When this is output, the incremental counting will go from 1 to 3. As with many

of these statements, in debug mode, the operation can be observed more closely by

executing the code line by line.

Loop Termination – CHECK
The CHECK statement works similarly to the CONTINUE statement, but this time allows

you to check specific conditions. When the logic of a CHECK statement is defined, if the

condition is not met, any remaining statements in the block will not be executed and

processing will return to the top of the loop. It can be thought of as a combination of the IF

and CONTINUE statements. To use the CHECK statement to achieve the same ends as in

the example above, the syntax would look like this:

The program will check that the sy-index field does not contain a value equal to 2, and

where it does not, will continue executing the code. When it does contain 2, the condition

attached will not be true and the CHECK statement will cause the loop to start again, miss-

ing the WRITE statement. This can be executed in debug mode to closely observe how it

works. The output window, once this is complete, will again appear like this:

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

When you are looking at programs created by other people, do not be surprised to see the

CHECK statement used outside loops. It is not only used to terminate a loop pass, but can

check, and terminate other processing blocks at any point if its particular conditions are not

met. You must be aware of where the CHECK statement is being used, as putting it in the

wrong place can even cause the entire program to terminate. For example here, the

statement will only allow processing to continue if the value of ‘a’ is equal to 1. Since the

value of ‘a’ equals 0, it will always terminate the program before the DO loop is reached:

Loop Termination – EXIT
The EXIT statement can also be used to terminate loops. This again allows the loop to be

terminated immediately without conditions. Unlike the CONTINUE statement though, it

does not then return to the beginning of a loop but, terminates the loop entirely once it is

reached. The program will then continue process the code immediately following the end

statement of the loop.

 PROGRAM FLOW CONTROL AND LOGICAL EXPRESSIONS

If the exit statement is used within a nested loop, it will only be that nested loop which is

terminated and the statement following the end of the nested loop will execute next in the

higher level loop. Additionally it can, like the CHECK statement, be used outside loops,

though again one must be careful doing this.

In the next example, regardless of the number of times the DO statement is told to be

executed, on the third loop when the sy-index field contains the number 3, the loop will be

terminated and the statement after ENDDO will be executed, writing “Filler” to the output

screen.

 SELECTION SCREENS

Selection Screens

Events
For selection screens to be built and used in a program, the first things to understand are

events. Events are processing blocks, sections of code specific to the selection screens. The

structure of an event starts with the event keyword, but does not have an ending keyword.

The end of the event block of code is implicit, because the beginning of the next event will

terminate the first, or the code itself will end.

When executable programs are run, they are controlled by a predefined process in the

runtime environment, and a series of processes are called one after another. These proc-

esses trigger events, for which event blocks can be defined within the program. When a

program starts, certain events work in a certain order.

At the top level is the SAP Presentation Server (Usually the SAP GUI), seen by the end

user, with its selection screen and list output. When a program starts, from the left, with the

declaration of global variables, the system will check to see if any processing blocks are

included and will follow the sequence of events detailed above to execute these.

 SELECTION SCREENS

The initialization event block of code will only be run once, and will include things like the

setting up of initial values for fields in the selection screen. It will then check whether a

selection screen is included in the program. If at least one input field is present, control will

be passed to the selection screen processor.

This will display the screen to the user, and it can then be interacted with. Once this is

complete, the ‘at selection screen’ event block will process the information, and this is

where one can write code to check the entries which have been made. If incorrect values

have been entered, the code can catch these and can force the selection screen to be dis-

played again until correct values are entered. Error messages can be included so that the

user then knows where corrections must be made.

The ‘start of selection’ event block then takes control once the selection screen is filled

correctly. This can contain code for, for example, setting up the values of internal tables or

fields. There are other event blocks, which are visible in the diagram and there could be a

number of others. The ones discussed here though, tend to be the main ones which would

be used when working with selection screens to capture user input, which will then be used

to process the rest of the program.

Once all of these event blocks have been processed, control is handed to the list proces- sor,

which will output the report to the screen for the user to see. The list screen occa- sionally

can be interactive itself, and the code in the event block ‘at line selection’ visible in the

diagram takes responsibility for this.

This chapter will focus on creating the selection screen and making sure the user enters the

correct values for the report, as well as ensuring the selection screen has a good inter- face.

Intro to Selection Screens
ABAP reports have 2 types of screens, selection screens and list output screens. The out-

put window has already been used to produce list output screens. Selection screens are very

commonly used. Indeed, when entering the ABAP editor, you are using a type of se- lection

screen:

 SELECTION SCREENS

We will focus on reproduced this type of screen for use by our programs. These will allow

the user to select data which will be used as parameters in the program. When one cre- ates

a selection screen, in fact a dialogue screen is being created, but one does not have to write

the dynpro code oneself. Only specific statements need to be used, and the sys- tem will

take care of the screen flow logic itself.

List screens and selection screens are both dialogue programs. Every one of these has at

least one dynpro which is held in what is called a module pool. A dynpro report program

called ‘standard selection screen’ is called and controlled automatically by the runtime

environment while the program is executed. The dynpro number itself is 1000. The user

will only see the screen when the programmer includes the parameters in their program

using specific ABAP statements. It is these ABAP statements which cause the screen to be

generated and displayed to the user. This means it is easy for the programmer to start

writing their own programs without having to think about code to control the screen.

Creating Selection Screens
Create a brand new program in the ABAP editor, called Z_SCREENS_1.

First, the initialization event will be looked at. This is the first thing to be triggered in a

program. In this example, imagine one wanted to know the last employee number which

was used to create a record in the zemployees table. The initialization event is the correct

place for this type of code, so that this information can then be displayed on the selection

screen, alerting the user that values greater than this should not be entered as they will not

return results.

 SELECTION SCREENS

Begin by declaring the TABLES statement for zemployees. Then declare a DATA

statement to hold the value of the last employee number that has been used in the table.

This can be done with a work area declared LIKE the employee number field of the table.

Type “INITITIALIZATION.”, to begin the event block, followed by a SELECT statement

where all records from zemployees are selected, and the work area is populated with the

employee number field:

Then add a WRITE statement for the work area to output to the screen after the loop. Note

that as the SELECT statement is a loop and does not contain a WRITE statement in- side it,

the WRITE statement at the end only writes the final employee number which populates

wa_employee, the last one which was used.

At Selection Screen
The “at selection screen” event is the next event block in the process. This will always be

executed, if present, before the report can be processed. This, then, would be the ideal place

to check the value which has been entered by the user as a new employee number. The

entry screen will be looked at later, but here some code will be written which will al- low

some kind of error message to be shown if an incorrect value is entered, telling the user to

correct their entry.

The PARAMETERS statement will be used, though will not be gone in detail until later.

This statement, allows you to declare a parameter input box which will appear on the

screen. This works similarly to a DATA statement - “PARAMETERS: my_ee LIKE

zemployees-

 SELECTION SCREENS

employee.”, declaring the parameter as having the same properties as the employee number

field.

Then declare the AT SELECTION-SCREEN event. This is declared with the addition

ON, and my_ee added. This specifies that the 'at selection screen' block refers specifically

to this parameter.

After this, an IF statement can be written, displaying an error message if the parameter

value my_ee entered by the user is greater than the value held in wa_employee, the last

employee number used:

As mentioned earlier, there is no need to terminate event blocks, as they are terminated

automatically when a new one begins. Hence, the INITIALIZATION block ends as soon as

the AT SELECTION-SCREEN block begins.

Parameters
Now, the PARAMETERS statement will be looked at in greater detail. Having defined the

my_ee variable using this statement, the system will now automatically know that a selec-

tion screen is going to be generated. This statement is all that is necessary to display a field

in a selection screen. If you display just the PARAMETERS variable on the screen, it will

appear like this:

 SELECTION SCREENS

The syntax for PARAMETERS is very similar to the DATA statement. A name is given to

the variable, a type can be given or the LIKE statement can be used to give the same

proper- ties as another field already declared. An example appears below, followed by the

output screen when this is executed:

The DOB parameter takes on the same attributes as the DOB field in the table, to the ex-

tent that it will even offer a drop-down box to select a date. The my_numbr parameter is not

related to another field as has been declared as an integer type parameter. Addition- ally,

note that parameter names are limited to 8 characters. Also, just like the DATA statement, a

parameter can hold any data type, with the one exception, floating point numbers. You will

notice also that the parameters in the output are automatically given text labels. The name

of the parameter from the program, converted to upper case is used by default.

Now, some additions to the PARAMETERS statement will be examined.

DEFAULT

If you add this to the end of the statement follow by a value, the value will appear in the

input box on the output screen giving a default value that the user can change if they wish.

 SELECTION SCREENS

OBLIGATORY

To make the field mandatory for the user, the addition OBLIGATORY is used. A small

tick- box will then appear in the field when empty, to indicate that a value must be inserted

here. If one tries to enter the report with this empty, the status bar will display a message

telling the user an entry must appear in this field:

Automatic Generation of Drop-Down fields

For the next parameter, the zemployees2 table will be used. This must be added to the

TABLES statement at the top of the program. A new parameter, named my_g here is set up

for gender:

Since a number of values allowed to be entered for the gender field have been suggested in

the table itself, a drop down box will appear by the parameter in the output window. Here

one can see the ABAP dictionary working in tandem with the program to ensure that values

entered into parameters correspond with values which have been set for the field in the

table:

 SELECTION SCREENS

If one manually types an illegitimate entry into the gender box, an error message will not

appear. Here, the VALUE CHECK addition is useful, as it will check any entry against the

valid value list which is created in the ABAP dictionary. Now if one tries to enter an invalid

value for the field, an error message is shown in the status bar:

(After this example, the zemployees2 table and gender parameter can be removed.)

LOWER CASE

By default parameter names are converted to upper case, to get around this one must use the

LOWER CASE addition. Create a new parameter named my_surn and make it LIKE

zemployees-surname field. Give this a default value of ‘BLOGS’ and then add the LOWER

CASE addition. When this is output, BLOGS still appears in upper case, but lower case let-

ters can be added to the end of it. If these were entered without the LOWER CASE addi-

tion, they would automatically convert to upper case:

 SELECTION SCREENS

There are other additions which can be included with parameters, but these are generally the

most common ones. To look at others, one can simply select the PARAMETERS state-

ment, and press F1 for the ABAP help screen, which will explain further additions which

can be used.

Check Boxes and Radio Button Parameters
Check boxes and radio buttons can both be used to simplify the task of data entry for the

end user. These are both forms of parameters.

A check box must always be of the character type ‘c’ with a length of 1. The contents

stored in this parameter will either be an ‘x’, when it is checked, or empty when it is blank.

Define a new parameter called my_box1. Since this is type c, the type does not have to be

declared. The field name is then followed by “as checkbox”. Note that the output differs

slightly from other parameters by seeing the box on the left and the text to its right:

Radio buttons are another common method for controlling the values stored in fields. A

normal parameter field allows any value to be entered, while a check box limits the values

to 2. Radio buttons, however, give a group of values which the user must choose one op-

tion from. Again, these are of data type c with 1 character.

To create a group of 3 radio buttons, 3 parameter fields must be set up. Each radio button

must be given a name, in this example to select between colours (don’t forget, parameter

names are limited to 8 characters), followed by “radiobutton”. These are then linked to-

gether by adding the word “group”, followed by a name for the group, here “grp1”. This

can be seen in the image below:

 SELECTION SCREENS

Select-Options
Next we will take a look at SELECT-OPTIONS. Parameters are useful for allowing the

user to select individual values.. However, when multiple values are required, rather than

set- ting up many different parameters, the select-options statement can be used.

The first thing to consider here is that internal tables will be used to store the values en-

tered by the user. A detailed discussion regarding internal tables will be returned to, but for

now, only what is necessary for select options will be looked at.

When a user wants to enter multiple individual values, or select a value range, these must

be stored in a table in memory which the program can use. The internal tables to be used

here are, similarly to parameters, limited to 8 characters and contain 4 fields which are

defined when the statement is created. These fields are “sign”, “option”, “low” and “high”.

The image below demonstrates the structure of this table:

When a user makes a choice, filling in a selection field on the screen, whether this is a sin-

gle value or a range of values, a record is generated and put into this internal table. This

table allows the user to enter as many records as they wish, which can then be used to filter

the data.

 SELECTION SCREENS

The “sign” field has a data type of c, and a length of 1. The data stored in this field deter-

mines, for each record, whether it is to be included or excluded from the result set that the

final report selects from. The possible values to be held in this field are ‘I’ and ‘E’, for

‘inclusive’ and ‘exclusive’.

The “option” field also has a type of c, but this time a length of 2. This field holds the se-

lection operator, such as EQ, NE, GT, LT, GE, LE (in order, as discussed previously: equal

to, not equal to, greater than, less than, greater than or equal to, less than or equal to), as

well as CP and NP. If a wild card statement is included here (such as * or +), the system

will default this to CP.

The “low” field holds the lower limit for a range of values a user can enter, while the

“high” field is the upper limit. The type and length of these will be the same as those for the

database table to which the selection criteria are linked.

The reason for using select-options is that parameters only allow for one individual spe-

cific value to be used. If for example, one is using parameters to select from the DOB field

in the zemployees table, these are very specific and so are likely to return, at best, one

result, requiring the user to know the exact date of birth for every employee. The select-

options statement allows one to set value ranges, wild cards and so on so that any selec- tion

within that will return results.

First, type the statement SELECT-OPTIONS and then give a name to the field to be filled,

for example my_dob. To declare the type, the addition FOR is used. This then link this to

zemployees-dob:

When this is output, 2 fields will appear, plus a ‘Multiple selection’ button:

A value range can be selected by entering the low value into the left field and the high value

in the right field. These two fields both include calendar drop down menus, making

 SELECTION SCREENS

entry here even easier. If the ‘multiple selection’ button is clicked, a new pop-up box ap-

pears:

The fields here allow multiple single records, or value ranges to be searched for, as well as,

in the case of the latter two tabs, excluded from one’s search results. All of the fields here as

well correspond to the initial data type, and so will all feature calendar drop-downs. The

buttons along the bottom add functionality, allowing values to be copied and pasted into the

rows available, and indeed to create and delete rows among other options. Addi- tionally on

the selection screen, if one right-clicks either field and chooses ‘options’, a list of the

logical operators will be offered, allowing further customisation of the value ranges

selected. This can also be done in the multiple selection box:

 SELECTION SCREENS

By filling in the fields offered via the SELECT-OPTIONS statement on the selection

screen, each of the fields of the internal table can then be filled depending on the options

chosen, telling the system exactly which values it should (and should not) be searching for.

Select-Option Example
With the select-options defined, some code will now be added.

Create a SELECT statement, selecting all the records from zemployees. Then, inside the

loop, add an IF statement, so that if a record from the zemployees table matches the value

range selected at the selection screen, the full record is written in the output screen.

The IN addition ensures that only records which meet the criteria of my_dob, held in the

internal table, will be included, and where they do not, the loop will begin again:

 SELECTION SCREENS

Put a breakpoint on the SELECT statement, so that you can watch the code’s operation in

debug mode. When you execute the code the selection screen will be displayed. Initially, do

not enter any values for the DOB field. Execute the program and the debugger will ap- pear.

Double click the my_dob field in the field mode. It will be shown to be empty and an icon

will appear to the left indicating that it represents an internal table. If this is double clicked,

the contents of the internal table are shown. Here, all fields are empty as no val- ues were

inserted:

Run through the code and all of the records from the table should be written to the out- put

screen, as no specific selection criteria were set.

Run the program again but this time include a value in the DOB field of the selection

screen. This one corresponds to one of the records in the table:

As the select loop is processed, eventually a matching record will be found. When this oc-

curs, rather than skip back to the beginning of the loop, the WRITE statement is executed:

 SELECTION SCREENS

Run the program again but this time try using the multiple selection tool to select several

values for the DOB field, as well as excluding some:

 SELECTION SCREENS

The internal table now contains several entries for values to search for and to exclude from

its search:

The records stored in the select-option table for my_dob show the different types of data the

system uses to filter records depending on the entries we make in the multiple selec- tions

window. Once the program is fully executed the output window then appears like this:

 SELECTION SCREENS

Select-Option Additions
As with most statements, there are a number of additions which can be appended to SE-

LECT-OPTIONS. Similarly to PARAMETERS, one can here use OBLIGATORY and

LOWER CASE, and others in exactly the same way. Unique to this statement, however, is

NO- EXTENSION, which prevents the multiple selection option from being offered to the

user. The ability to select a value range still exists, but extending this via multiple selections

is prevented:

Text Elements
We have already touched on the fact that when parameters and select-options are de- clared

the fields are labelled with the technical names given in the code. These fields still must be

referenced using the technical name. However, it will be much preferable for the user to see

some more descriptive text. Let’s see how we can do this by using Text Ele- ments.

Every ABAP program is made up of sub-objects, like text elements. When one copies a

program, the list of options offered asks which parts of the program one wants to copy. The

source code and text elements here are mandatory, these are the elements which are

essential to the program.

When text elements are created, they are created in text pools, which hold all of the text

elements of the program. Every program created is language independent, meaning that the

text elements created can be quickly and easily translated to other languages without the

need for the source code to be changed.

There are three kinds of text elements which can be used in a program, selection texts,

mentioned above, are one. The other two are text symbols and list headings. Text symbols

can be created for a program so that one does not have to hard code literals into the source

code. List headings, as the name indicates, refer to the headings used when creat- ing a

report. By using these instead of hard coding them into the program, one can be cer- tain

that they will be translated if the program is then used in another language. Also, if

 SELECTION SCREENS

the headings need to be changed later on, one can just change the list headings set rather

than going into the code and doing this manually.

Selection texts allow text elements to be displayed on the screen so that the user does not

have to see the technical names for fields and the like. There are several ways to navigate to

the screen where these can be created and changed. At the initial ABAP editor screen, there

is in fact an option for creating text elements:

Alternatively, if one is already inside the program, this can be reached through the ‘Goto’

menu, ‘Text elements’ and select ‘Selection texts’:

If this is clicked, a screen will appear where selection texts can be created for all of the

technical field names which appear at the selection screen:

 SELECTION SCREENS

The third column here is for ‘Dictionary reference’, which recognises that some of these

fields are linked to fields already created in the ABAP dictionary. If one checks this box

and clicks save, the field names from the initial fields and the ABAP dictionary

automatically appear. You can of course choose not to use the text here and overwrite it

yourself.

For the others fields, the text must be manually typed in, up to a 30 character limit:

 SELECTION SCREENS

Text Elements must then be activated and once this is done, they are automatically saved

and will appear on the selection screen in place of the technical names. The output screen

will now look like this:

Variants
When a user fills in a selection screen, there is the option of saving the entry. This is called

a variant:

 SELECTION SCREENS

Once this is done, a new screen appears. As long as a name and description are given, this

can be saved for use later on:

Once saved a new button appears on the selection screen next to the execute button,

named ‘Get variant’ allowing the variant entry to be recalled.

 SELECTION SCREENS

A box appears allowing a variant to be selected and when selected, the fields are popu-

lated with the data from that particular entry. Another way to create variants is via the initial

ABAP editor screen.

Choose the ‘Variants’ option. A new variant name can be entered and then the variant can

be created:

Once ‘Create’ is clicked, the selection screen appears and you can proceeds as normal,

saving the attributes of the new variant once the entries have been made. You can then

choose between displaying and changing the values and attributes of the variant (‘Values’

will show the selection screen, ‘Attributes’ the screen below. These two views can be

switched between):

 SELECTION SCREENS

The ‘Only for background processing’ check box allows you to tell the system to only use

this variant as part of a background job. Here, a job can be scheduled to run overnight so

the program does not in fact have to be monitored.

The ‘Protect variant’ option prevents other users from being able to select this variant and

using it on their reports.

‘Only display in catalog’ effectively makes the variant inactive, it will exist, but when a

user views the drop-down menu of existing variants, it will not appear.

 SELECTION SCREENS

The ‘Field attributes’ section allows the list of possible attributes displayed to be assigned

to the fields in the bottom section of the screen, via the check boxes. Experiment with the

different options available and see the results. For example, you can see that the ‘Re- quired

field’ check box for ‘Employee number’ has been filled here, as this was labelled

OBLIGATORY in the program. The P’s and one S which appear by the fields simply refer

to whether each field is a parameter or select-option.

Choose ‘Protect field’ for the Date of Birth field; it will no longer be possible to change the

value set until such time as this box is un-checked. In the image below you can see this field

has been greyed out and cannot be changed:

When large selection screens are created, users will regularly create variants so that, if

necessary, the same data can be used repeatedly when running reports, saving the time it

would take to fill in the information again and again. Unnecessary fields, or fields which

will always hold the same value can be protected so that filling in the screen becomes a

much simpler and less time consuming task for the end user.

At the ABAP editor’s initial screen, there is in fact a button which allows the program to

run with a variant, directing one straight to the selection screen with the variant’s values

already present:

 SELECTION SCREENS

The ABAP editor will likely not be accessed by the user but reports can be accessed via the

‘System’ menu, ‘Services’, and then ‘Reporting’. Selecting this presents the ’ABAP:

Execute Program’ screen, which could be described as a cut-down version of the ABAP

editor screen, minus the editing functionality. From here the program can again either be

exe- cuted directly or executed using a variant which can be selected from the menu which

is offered:

 SELECTION SCREENS

If the program is executed directly and the user then wants to use a variant, this can also

be done via the ‘Goto’ menu:

Text Symbols
We will now take a look at other text objects starting with Text Symbols. These are used to

replace literals in a program. For example, when the WRITE statement is used, one can

choose to use text symbols to reuse text which has already been set up. This also gives the

added functionality of being able to use translated text within the program. This allows hard

coded literals to be avoided and text symbols used in their place.

Text symbols effectively function as placeholders for text. So, rather than having “WRITE:

/ ‘Surname’.” multiple times in the code, you can avoid using the literal by using “WRITE:

/ text-001.” which here would refer to a text symbol which can be set up with the text

“Surname” itself.

 SELECTION SCREENS

Text symbols are always declared with the word ‘text’ followed by a dash and a three digit

number. This means that up to 1000 text symbols can theoretically be used in a program, of

which each one can be translated into as many languages as one wishes. One thing to

remember here is that text symbols are always limited to 132 characters in length.

To create a text symbol, you can use the ‘Goto’ menu, select ‘Text elements’ and then ‘Text

symbols’, or you can use forward navigation. Just double-click ‘text-001’. A window will

then appear asking if you want to create this object, select ‘Yes’. The Text Elements

window will then appear and text can be entered for the new text symbol.

Here, include the word ‘Surname’. The column on the left references the text symbol id

‘001’. The two columns on the right note the text’s length and maximum length:

This can then be activated and you can step back to the program. If the code is then exe-

cuted, the word ‘Surname’ will be output twice, the first from the WRITE statement with

the literal, the second from the WRITE statement with the newly created text symbol:

It is advisable to use text symbols rather than literals as often as possible as it is much eas-

ier to change the text symbol once than to sift through the code to find and change many

literal values. Additionally, using text symbols gives the added benefit of translatability.

 SELECTION SCREENS

Text Messages
The next thing to be examined here is messages. When one wants to give feedback to the

user, literals can be used, but as stated above, this is to be avoided as far as possible. To use

messages then, these must first be stored in a message class, which is in turn stored in a

database table called T100.

At the ABAP dictionary’s initial screen, type ‘T100’ into the database table field and

choose ‘Display’:

If one views the contents of this, one can see the four fields displayed. One for language

(here D, referring to German), one for the application area, one for the message code and

one for the message text:

To create new messages to be used in your program, forward navigation can be used, or the

transaction SE91 can be directly accessed:

 SELECTION SCREENS

First, create a message class. These must again follow the customer name space rules, here

beginning with the letter Z. Let’s call this ZMES1 and choose Create. Messages are distinct

from text elements as they are not themselves part of the program created. They exist

independently. They are instead stored in the T100 table. This means that messages can be

reused across many programs.

The attributes must be filled in, creating a short text. Then, in the messages tab, the text to

be used can be created:

 SELECTION SCREENS

Remember that, when the AT SELECTION-SCREEN event was created, an IF statement

was used so that if the employee number given by the user was greater than the last

employee number used in the table, a message would be displayed. Here, the text for that

message can be created:

Once the text is entered, it can be saved.

There are a number of message types which can be used, as this table explains:

A Termination

Message

The message appears in a dialog box, and the program terminates. When
the user has confirmed the message, control returns to the next-highest

area menu.

E Error

Message

Depending on the program context, an error dialog appears or the

program terminates.

I Information The message appears in a dialog box. Once the user has confirmed the
message, the program continues immediately after the MESSAGE

statement.

S Status

Message

The program continues normally after the MESSAGE statement, and the
message is displayed in the status bar of the next screen.

W Warning Depending on the program context, an error dialog appears or the

program terminates.

X Exit No message is displayed, and the program terminates with a short dump.

Program terminations with a short dump normally only occur when a

runtime error occurs. Message type X allows you to force a program

termination. The short dump contains the message ID.

For this example, type E, an error message, will be used. Depending on where this type of

message is used, it will have a different effect. Here, it will be used at the “at selection-

screen” and the program’s execution will pause, the error message will be displayed and

 SELECTION SCREENS

the user will be allowed to amend their entry. When the new entry appears, the event will

begin again. If an error message is used elsewhere, outside of an event in the main body of

the code, when this is triggered the program will terminate entirely.

To include the newly created message in the code, then, the syntax is “MESSAGE

e000(ZMES1).” The ‘e’ refers to the error message type, the ‘000’ to the number assigned

to the message in the message class, and then ‘ZMES1’ to the class itself:

The INITIALIZATION event will populate wa_employee with the last, highest employee

number used in the table, and then, at the AT SELECTION-SCREEN event, the value en-

tered can be checked against this. If it is higher, the error message will display. You can

monitor these values in debug mode to watch the code in action. Here, the number is higher

so, once executed, the selection screen will be returned to and the message dis- played in

the status bar:

 SELECTION SCREENS

Once a legitimate, lower value is entered, the program will continue as normal without

triggering the error message.

An addition which can be used with the MESSAGES statement is WITH. Here, a field can

be specified, for example to display the invalid value which was entered by the user in the

message itself. The WITH addition allows up to 4 parameters to be included in the error

message. To do this, one must ensure the error message is compatible.

Create another message in the message class screen, this time with an & character. When

used in conjunction with the WITH addition, this character will then be replaced by the

value in the specified parameter:

Save the new message, add “WITH my_ee” to the MESSAGES statement and change the

number of the message referenced in the code to the new 001 message:

As messages created are not specific to the program itself, but can be used across the en-

tire system, it is usually worth checking if an appropriate message for the task you are per-

forming already exists, rather than continually setting up new messages.

 SELECTION SCREENS

Skip Lines and Underline
Now, a look will be taken at formatting selection screens. This will allow the screen to be a

lot easier to navigate and so on for the end user. Parameters and select-options have al-

ready been set up, but as yet no layout options have been implemented allowing the sys-

tem to place the objects by itself. This is generally not sufficient. For example, when a

group of radio buttons appear, they should be distinct and positioned in a group on their

own, clearly separated from other parts of the screen.

The SELECTION-SCREEN statement, and its associated additions allow this kind of

format- ting to be done. One must locate where in the code the screen layout begins to be

re- ferred to. Here, this is at the top when PARAMETERS is declared. In the line above

this, type the statement SELECTION-SCREEN. Additions must then be added.

First, to add blank lines you can use the SKIP addition, followed by the number of lines to

be skipped. If you only want to skip 1 line then the number can be omitted as this is the

default values. This line of code must then be moved to the place where you want the line to

be skipped. Place it under the my_ee parameter. Note that the PARAMETERS chain is now

broken, so another PARAMETERS statement must be added:

 SELECTION SCREENS

To add a horizontal line, the ULINE addition can be used:

There are further additions which can be added to ULINE to determine its position and

length. The code in the image below sets the position of the line to the 40th character from

the left of the screen, and its length is set to 8 characters:

 SELECTION SCREENS

	UNIT – IV
	Dr.A.DEVI
	Associate Professor
	Department of Computer Applications
	DRSNSRCAS
	Modifying Data in a Database Table
	Authorisations
	Fundamentals
	Database Lock Objects
	Using Open SQL Statements
	Using Open SQL Statements – 5 Statements
	Insert Statement
	Clear Statement
	Update Statement
	Modify Statement
	Delete Statement

	Chapter 10 – Program Flow Control and Logical Expressions
	Control Structures
	If Statement
	Linking Logical Expressions Together
	Nested If Statements
	Case Statement
	Select Loops
	Do Loops
	Nested Do Loops
	While Loops
	Nested While Loops
	Loop Termination – CONTINUE
	Loop Termination – CHECK
	Loop Termination – EXIT

	Selection Screens
	Events
	Intro to Selection Screens
	Creating Selection Screens
	At Selection Screen
	Parameters
	DEFAULT
	OBLIGATORY
	LOWER CASE

	Check Boxes and Radio Button Parameters
	Select-Options
	Select-Option Example
	Select-Option Additions
	Text Elements
	Variants
	Text Symbols
	Text Messages
	Skip Lines and Underline

